### **Planning Safety Demonstration**

<u>Vikash Katta<sup>1</sup></u>, Pontus Ryd<sup>2</sup>, Janne Valkonen<sup>3</sup>

<sup>1</sup>Institute for Energy Technology, Norway
<sup>2</sup>Solvina AB, Sweden
<sup>3</sup>VTT Technical Research Centre of Finland Ltd, Finland



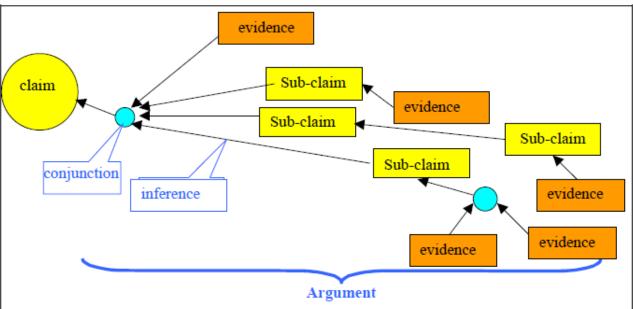




#### Contents

- Safety demonstration
  - Definitions
  - Challenges
- Nuclear Safety Research (NKS) PLANS project
- Safety demonstration plan guide
- Relevance to other industries




21/03/2016





#### **Safety demonstration**

- Safety demonstration (safety case)
  - "The set of arguments and evidence elements which support a selected set of claims on the dependability – in particular the safety – of the operation of a system important to safety used in a given plant environment."



[Licensing of safety critical software for nuclear reactors - Common position]







#### Safety demonstration (cont..)

- Safety (demonstration) plan
  - "A plan, which identifies how the safety demonstration is to be achieved; more precisely, a plan which identifies the types of evidence that will be used, and how and when this evidence shall be produced."
  - "A safety plan shall be agreed upon at the beginning of the project between the licensor and the licensee."

[Licensing of safety critical software for nuclear reactors – Common position]

- Safety demonstration plan guide (SDPG)
  - "A guideline or a document describing an approach for how to plan and perform safety demonstration. The guide supports the development of the safety plan."

[ELFORSK rapport 13:86]





Strâl



## Practices and Challenges in in demonstrating safety of Digital I&C

- Interviews with regulators from 6 countries
  - As a part of OECD Halden Reactor Project
  - Practices and challenges of safety demonstration
- Practice
  - Safety demonstration/case
    - Is required by regulation
    - Not required by regualtion, but regualtor is positive towards it

- Not required by regualtion, does not want an explicit argumentation
- Different standards to be complied with
  - IEEE framework
  - IEC/IAEA framework









#### Challenges

Deficiencies with

- Common understanding between stakeholders
- Convincingly expressing the safety demonstration
- Building confidence
- Documentation overload
- Designing for safety demonstration
- Harmonize safety demonstration with the development process
- Tools for safety demonstration





## Common understanding between stakeholders

- Lack of common understanding between stakeholders on:
  - Guiding safety principles, and how these should be achieved
  - Applicable standards and measures
  - Interpretation of regulations
  - Acceptable evidences
  - Expected deliverables
- Lack of communication between the stakeholders, especially at the early stages of the project
  - Right experts (I&C, safety, security) are not involved







#### Expressing the safety demonstration

- Convincingly express/describe safety demonstration
  - Complete, correct, consistent, and transparent
  - It is not clear how to accurately define (and assess) what these characteristics mean
- Have invalid or missing information, evidence on
  - Application of suitable standards and measures
  - Application of safety principles
  - Description of the interaction with other parts of the system and people, design decisions made
  - Description of strengths and weaknesses of the system
- Not comprehensive
  - Contains complex statements, extraneous details, etc.









## Harmonize safety demonstration with the development process

- Safety demonstration activities are not well integrated with the development process
  - Design goes ahead of safety demonstration
    - E.g. decision to use software-based systems without considering how this impacts safety, demonstration
- Safety demonstration should be a living document
  - Updated and maintained throughout the development process including operation, maintenance, decomissioning
  - Systems with a long life expectancy, safety demonstration
    - Has to document the history of modifications made
    - Becomes large, difficult to maintain, and difficult to comprehend









#### **Documentation overload**

- Lot of documentation
  - Safety demonstration + supporting documentation
  - System that was built by several engineers over many years
  - Reviewed by few regulators
- Difficult to extract the relevant parts needed to perform different jobs or tasks
  - Stakeholders who review (regualtor, independent assessor)
  - Stakeholders who might use it during activities such as operation and maintenance
    - Maintenance personnel: identify parts of the demonstration which state the maintenance tasks required







### **Suggestions for improvement - Planning**

- Prevented by precise planning early in the project
  - Establish a safety plan, preliminary safety case
- Licensee/utility and suppliers plan for safety
- Communicate plans to the regualtor as well as internally within the organisation
- Supports common understanding of how safety will be achieved
  - agreements on guiding safety principles, evidence (artefacts) required, interpretation of regulations, etc









### **Utility & supplier view**

- NKS PLANS project workshop
  - Practices, challenges, possible solutions for safety demonstration
- 1. Knowledge gap across organisations (utility, supplier, etc) as well as within disciplines of an organisation
  - What is safety demonstration, what are the contents, how to perform it, ...
  - Have a plan at early stages of lifecycle, involve right people in planning
  - Better communication and understanding between experts from different disciplines (safey, security, I&C, management) and organisations
- 2. Multidisciplinary approach for safety demonstration incorporating boundaries and interfaces between various disciplines
  - Interfaces (e.g. I&C and plant design), completeness of I&C requirements towards plant design, information flow across disciplines
  - Integrating safety demonstration with development process
  - Configuration and change management for the whole plant, all changes have to be reviewed by all the relevant departments.
- 3. Better understanding of safety demonstration and cost-benefits
  - Concepts, relation to safety systems engineering, safety and cost-benefits







#### **Guidance on safety demonstration planning**

- Lack of detailed guidance on how to plan for safety demonstration
  - How to perform safety demonstration during development?
  - What kind of evidence (artefacts) are required and collected in each stage of development process?
  - How to organise the evidence and claims in a logical manner?
- Safety Demonstration Plan Guide (ELFORSK rapport 13:86)
  - Developed by Solvina AB
  - Project steering group constitued by expert representatives from Vattenfall, Fortum, OKG, FKA and SSM

- Provides a high-level strategy on how to perform the demonstration
- Starting point for PLANS project







#### **NKS-R PLANS project**

- Nordic Nuclear Safety Research (NKS) funded
- Aim: Improve guidance on safety demonstration planning for Digital I&C systems in NPPs







#### **PLANS** objectives

- Refining the Safety Demonstration Plan Guide, by:
  - Identify type of evidence (artefacts) needed
  - Provide explicit and clear reasoning structure for organising claims and evidence
  - Develop illustrative examples
- Establishing a <u>Nordic network</u> of competence on nuclear Digital I&C safety demonstration, with experts from
  - Regulators, utilities, suppliers, technical consultancy firms and research organisations
  - http://nordicnsec.ife.no
- Long term objective:
  - Define a framework for Digital I&C safety demonstration planning
  - Serve as a harmonized foundation between the Nordic countries





## Safety Demonstration Plan Guide

A general guide to Safety Demonstration with focus on digital I&C in Nuclear Power Plant modernization and new build projects

Research project initialized and sponsored by Elforsk





#### Background to the Guide

- The Guide is to provide a common structure and guidelines for how to perform Safety Demonstration, agreed upon by Swedish utilities and the regulator.
- A common structure would facilitate the exchange of experience between utilities and projects.

3/21/2016





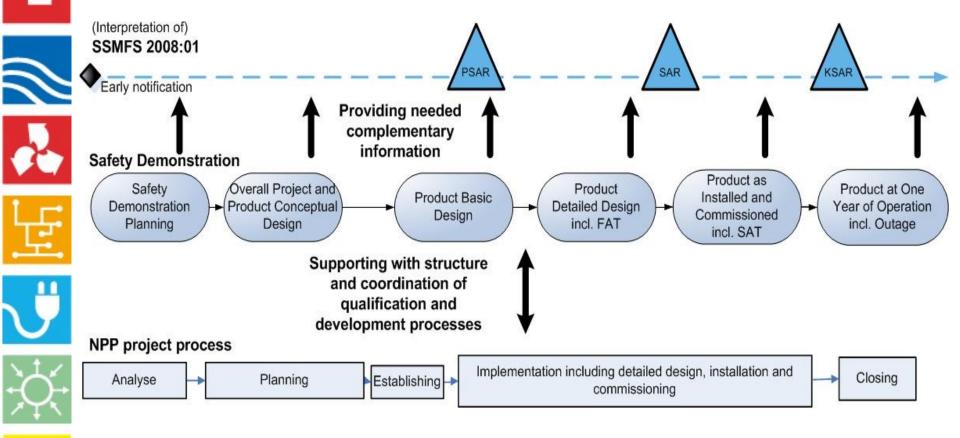
#### **Background to Safety Demonstration**

- Experiences from complex modernization and new build projects including digital I&C indicates a need for a complement to present licensing approaches.
- US NRC has found the present Standard Review Plan (NUREG 0800) insufficient and develops new review guidelines for digital I&C (RIL-1101).
- The regulators of six European countries have summarized common positions (SSM 2013:08) recommending Safety Demonstration as a possible solution to the problems.
- Safety Demonstration has been applied in Swedish projects with good results.

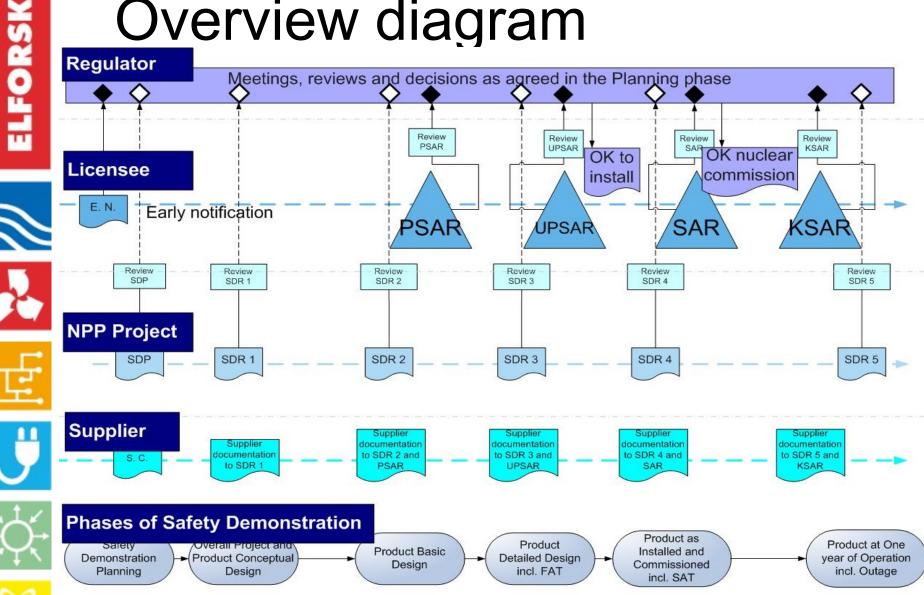


#### **Cornerstones of Safety Demonstration**

- Continuous communication and stepwise approval of results according to agreed plan between the project stakeholders (supplier, NPP project, licensee and regulator).
- Planning and communication to be started **early** in the project.
- Graded approach meaning to demonstrate safety with level of detail commensurate to importance to safety.
- Qualify not only adequate product but also work processes, organization and competence of people involved. All proven adequate - separately and in combination - and in all of the system life cycle phases.

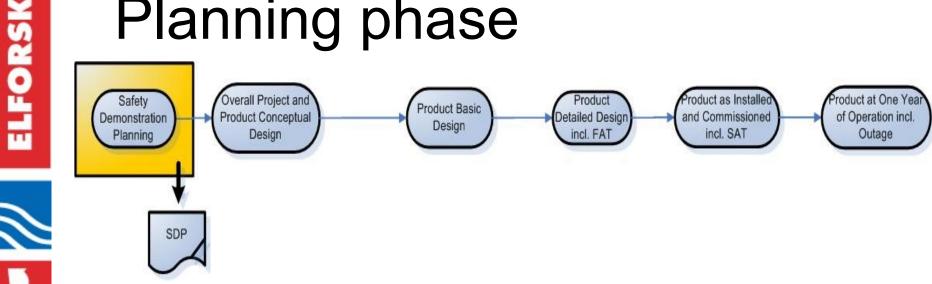

## Contents of the Guide

- 1. Introduction
- 2. Life cycle and contents of Safety Demonstration
- 3. Safety Demonstation Planning phase
- 4. Safety Demonstration Qualification phases
- 5. Safety Subject Areas Contents of Safety Demonstration
- 6. Specific challenge areas for digital I&C
- 7. References
- 8. Templates




ELFORSK

Safety Demonstration complements the present licensing approach and integrates it with the normal project design control

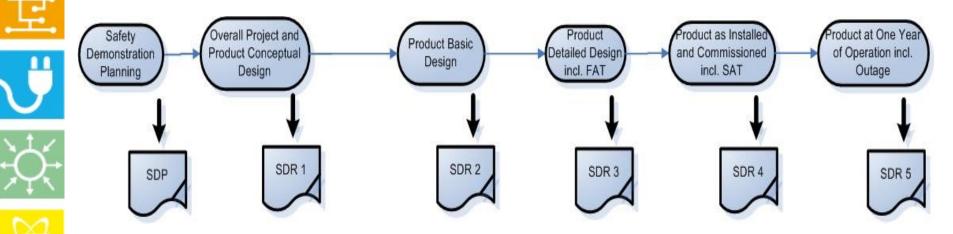



## **Overview** diagram

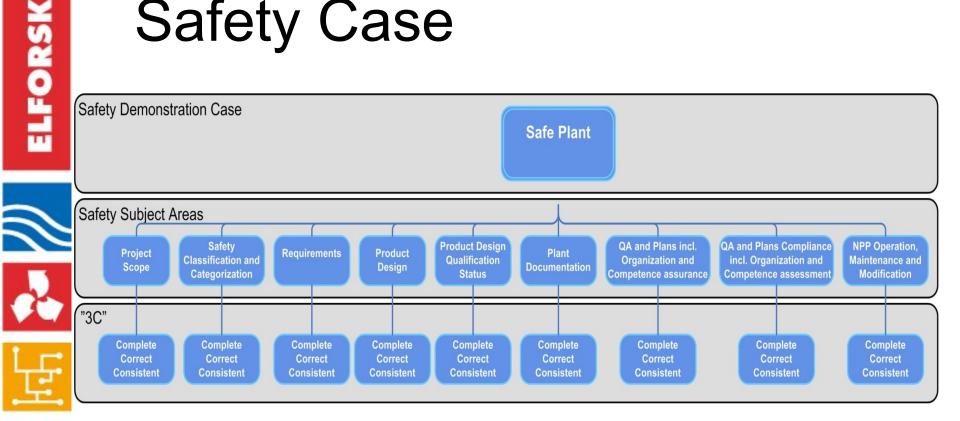


Time schedule with major project and Safety Demonstration milestones

## Planning phase




Important outcome of the planning phase:


- Safety Demonstration Plan SDP with overview diagram •
- Safety Demonstration Case **Definition** including demonstration • strategies
- Scope and requirements for Qualification phases ٠

#### **Qualification phases**

- 1. Overall Project and Product Conceptual Design
- 2. Product Basic Design
- 3. Product Detailed Design including FAT
- 4. Product as Installed and Commissioned including SAT
- 5. Product at One Year of Operation including Outage



## Safety Case



SSAs are safety aspects that together form the overall safety case.

The set of SSAs to select for a specific Safety Demonstration must always be decided case by case for each individual project.

- Standard Safety Subject Areas are suggested by the Guide and described with;
- Purpose and scope defining the area.
- Strategy advising how to perform the demonstration of the area.
- **Examples** of specific evidence to be used and possible reference to relevant standards.
- SSAs are defined and assessed in the planning phase and thereafter re-assessed (with possible adjustment if necessary) in each qualification phase.

ELFORSK

# 









#### Guide section 3 Overview of phase report content and focus

|                                                                                  | Planning<br>Phase                   | Qualification phases                                   |                            |                                             |                                                         |                                                         |
|----------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------|----------------------------|---------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| SSA                                                                              | Safety<br>Demonstration<br>Planning | Overall Project<br>and Product<br>Conceptual<br>Design | Product<br>Basic<br>Design | Product Detailed<br>Design including<br>FAT | Product as<br>Installed and<br>Commissioned<br>incl SAT | Product at One<br>Year of<br>Operation incl<br>Outage * |
| Project Scope                                                                    | S                                   | F                                                      | С                          | С                                           | С                                                       | -                                                       |
| Safety<br>Classification and<br>Categorization                                   | S                                   | F                                                      | С                          | С                                           | С                                                       | с                                                       |
| Requirements                                                                     | S                                   | F                                                      | С                          | С                                           | С                                                       | c                                                       |
| Product Design                                                                   | S                                   | i                                                      | F                          | F                                           | С                                                       | С                                                       |
| Product Design<br>Qualification<br>Status                                        | S                                   | -                                                      | F                          | F                                           | F                                                       | С                                                       |
| Plant<br>Documentation                                                           | S                                   | -                                                      | i                          | F                                           | F                                                       | С                                                       |
| QA and Plans incl.<br>Organization and<br>Competence<br>Assurance                | S                                   | F                                                      | C                          | С                                           | С                                                       | С                                                       |
| QA and Plans<br>Compliance incl.<br>Organization and<br>Competence<br>assessment | S                                   | i                                                      | F                          | F                                           | F                                                       | i                                                       |
| Operation,<br>Maintenance and<br>Modification<br>6-03-21                         | S                                   | -                                                      | -                          | i                                           | F                                                       | F                                                       |

2016-03-21

# 







#### Guide section 4 Qualification phase scope and requirements

| SSA                                               | Overall Project and<br>Product Conceptual<br>Design    | Scope                                                                                                              | Requirements                                                                                                                                                                                                                                                 |
|---------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Scope                                     | F                                                      | Project scope definition (including Product,<br>technical documentation, instructing<br>documentation, competences | Project scope definition "3C"<br>and agreed by all<br>stakeholders.                                                                                                                                                                                          |
| Safety<br>Classification<br>and<br>Categorization | F                                                      | Overall principles for safety classification and categorization                                                    | Safety classification and<br>categorization principles "3C"<br>as defined                                                                                                                                                                                    |
| Requirements                                      | <b>F</b> Overall high-level requirements specification |                                                                                                                    | High level requirements "3C",<br>e.g. that I&C requirements<br>originate with traceability<br>from the Plant design basis<br>(may require significant<br>iteration) and that relevant<br>portions of chapter 6<br>challenge areas are properly<br>reflected. |
| Product<br>Design                                 | i                                                      | Product Architectural Design (or Conceptual<br>Design)                                                             | The design version identified and assessed for "3C". *                                                                                                                                                                                                       |
| Product<br>Design<br>Qualification<br>Status      | -                                                      | Not in scope this phase unless chosen to add                                                                       | If applicable, any V&V records<br>identified support product<br>design qualification at present<br>status                                                                                                                                                    |
| Etc. for all SSA                                  |                                                        |                                                                                                                    |                                                                                                                                                                                                                                                              |

Example: **Table 4-1** Presenting the focus for the Safety Demonstration in the Overall Project and Product Conceptual Design qualification phase. Table not complete in this picture.

2016-03-21

### **Example questions in SDPG guidance**

 How explicit is product scope (functional, physical and geographical) defined with boundaries/interfaces? How and when is it documented, agreed and communicated? How strongly applied along the project and plant life cycle?

#### SAFETY SUBJECT AREAS

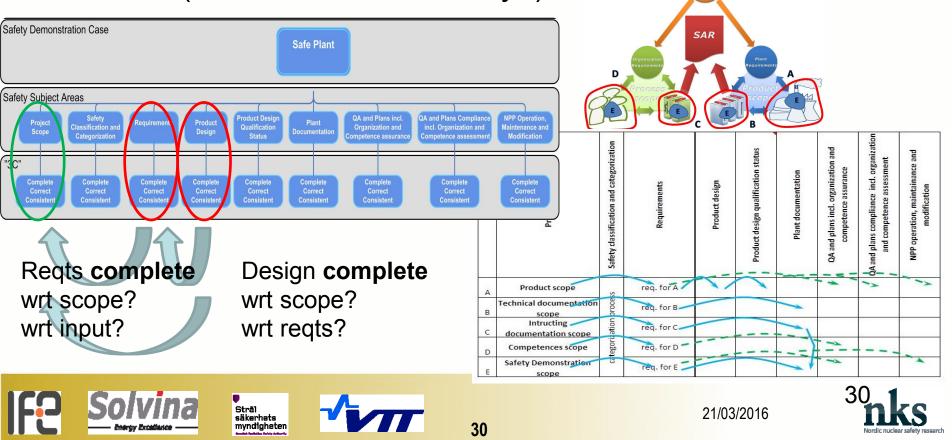
- Project Scope
- Safety Classification and Categorization

Strâl

myndigheten

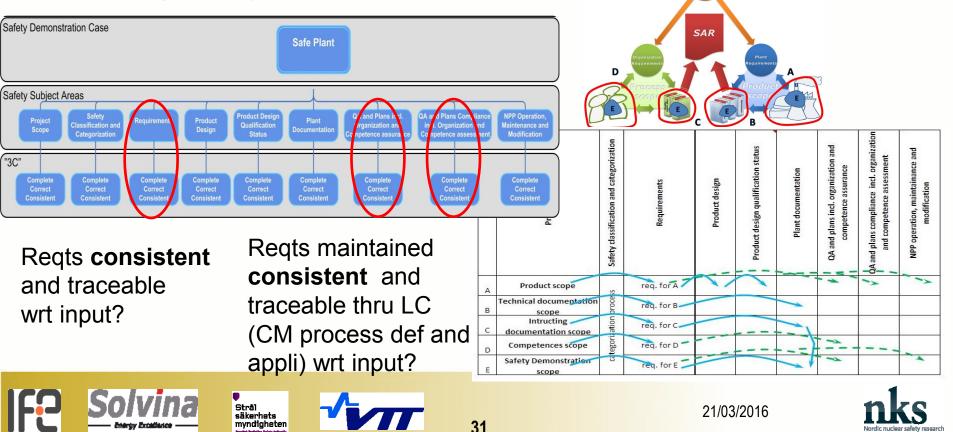
- Requirements
- Product Design

Camplete Requirements D Process Scop









### **Example questions in SDPG guidance**

2. Do you demonstrate that the requirements specification is **complete** in relation to scope and that product design is complete in relation to scope and requirements? If so, how? (If not, how claim safety?)



### **Example questions in SDPG guidance**

3. How do you know that I&C requirements are consistent with plant design? Do you demonstrate? If so how? (If not, how claim safety?) During project – After project, along life cycle?



#### SSAs – claim, context, evidence

#### **Requirements SSA**

- Claim: Applicable requirements (design, standards, work process, competence) are identified.
  - Context: Project scope specification, Requirements specification
  - Evidence: Requirements specification review, QA review, Traceability matrix
- Claim: I&C requirements are traceable to plant level requirements
  - Context: project scope specification, requirements specification

32

• Evidence: Traceability matrix





#### SSAs – claim, context, evidence

- Claim: I&C requirements are traceable to functional, system design, detailed design requirements.
  - Context: Requirements specification, Design description
  - Evidence: Traceability matrix
- Claim: All hazardous conditions are identified and are acceptable.
  - Context: Requirements specification, System level hazards
  - Evidence: Hazard log, Hazard analysis report, Hazard analysis report review, Traceability matrix

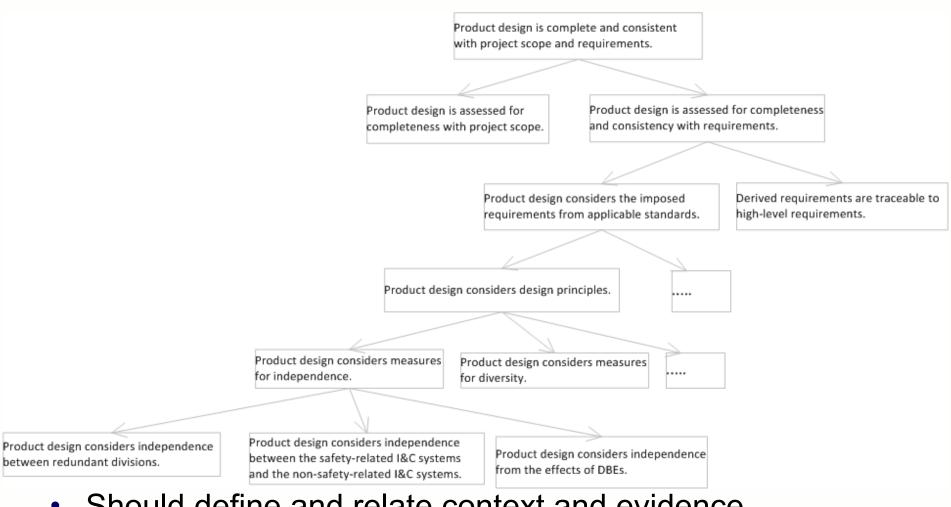






#### SSAs – claim, context, evidence

#### **Product Design SSA**


- Claim: Applicable version of product design is identified.
  - Context: Design description, requirement specification
  - Evidence: Design review, CM report
- Claim: Product design is complete and consistent with project scope and requirements.

- Context: Design description, requirement specification, standards
- Evidence: Design review, traceability matrix





#### **Claim decomposition**



35

#### Should define and relate context and evidence







21/03/2016



#### **Relevance to other industries**

- Automotive
  - To learn from?
- Railway
  - Safety case is mandatory and widely used
  - Looking into reuse, modular safety case
- Air traffic management

Strâl

- Upcoming EU regulations might require safety case
- Safety case is not widely practiced
- Lack of awareness on safety case
- Lack of management participation
- Safety cases focus mostly on compliance to standards





#### Conclusions

- Safety demonstration/case allows to see overall system safety at a shallow level
  - Identify what is required and what is missing
  - Complement with (in-depth details/evidence) documentation from engineering activities.
  - Focus on important aspects/areas that allows to make conclusions on safety
  - Make important information explicit, instead of a reviewer going through vast amount of documentation

- Safety Demonstration Plan Guide (application of it) is a starting point for safety demonstration
- Put forward the plans/approach for reasoning on safety, including claims, required evidence
  - Making your plans visible!
  - Agree/disagree upon aspects







#### Thank you!







